82 research outputs found

    Measuring Galaxy Environments with Deep Redshift Surveys

    Full text link
    We study the applicability of several galaxy environment measures (n^th-nearest-neighbor distance, counts in an aperture, and Voronoi volume) within deep redshift surveys. Mock galaxy catalogs are employed to mimic representative photometric and spectroscopic surveys at high redshift (z ~ 1). We investigate the effects of survey edges, redshift precision, redshift-space distortions, and target selection upon each environment measure. We find that even optimistic photometric redshift errors (\sigma_z = 0.02) smear out the line-of-sight galaxy distribution irretrievably on small scales; this significantly limits the application of photometric redshift surveys to environment studies. Edges and holes in a survey field dramatically affect the estimation of environment, with the impact of edge effects depending upon the adopted environment measure. These edge effects considerably limit the usefulness of smaller survey fields (e.g. the GOODS fields) for studies of galaxy environment. In even the poorest groups and clusters, redshift-space distortions limit the effectiveness of each environment statistic; measuring density in projection (e.g. using counts in a cylindrical aperture or a projected n^th-nearest-neighbor distance measure) significantly improves the accuracy of measures in such over-dense environments. For the DEEP2 Galaxy Redshift Survey, we conclude that among the environment estimators tested the projected n^th-nearest-neighbor distance measure provides the most accurate estimate of local galaxy density over a continuous and broad range of scales.Comment: 17 pages including 16 figures, accepted to Ap

    Kiloparsec-scale Spatial Offsets in Double-peaked Narrow-line Active Galactic Nuclei. I. Markers for Selection of Compelling Dual Active Galactic Nucleus Candidates

    Get PDF
    Merger-remnant galaxies with kpc-scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 < z < 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with ~kpc projected spatial separations on the sky, which suggests that they are produced by kpc-scale dual AGNs or kpc-scale outflows, jets, or rotating gaseous disks. In addition, we find that the subsample (58%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational criteria for selecting the most promising dual AGN candidates from the full sample of double-peaked narrow-line AGNs. Using these criteria, we determine the 17 most compelling dual AGN candidates in our sample.Comment: 12 pages, 8 figures, published in ApJ. Modified from original version to reflect referee's comment

    Dependence of Galaxy Quenching on Halo Mass and Distance from its Centre

    Full text link
    We study the dependence of star-formation quenching on galaxy mass and environment, in the SDSS (z~0.1) and the AEGIS (z~1). It is crucial that we define quenching by low star-formation rate rather than by red colour, given that one third of the red galaxies are star forming. We address stellar mass M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to the halo centre D. The fraction of quenched galaxies appears more strongly correlated with Mh at fixed M* than with M* at fixed Mh, while for satellites quenching also depends on D. We present the M*-Mh relation for centrals at z~1. At z~1, the dependence of quenching on M* at fixed Mh is somewhat more pronounced than at z~0, but the quenched fraction is low (10%) and the haloes are less massive. For satellites, M*-dependent quenching is noticeable at high D, suggesting a quenching dependence on sub-halo mass for recently captured satellites. At small D, where satellites likely fell in more than a few Gyr ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of quenching is consistent with theoretical wisdom where virial shock heating in massive haloes shuts down accretion and triggers ram-pressure stripping, causing quenching. The interpretation of deltaN is complicated by the fact that it depends on the number of observed group members compared to N, motivating the use of D as a better measure of local environment.Comment: 23 pages, 13 figures, accepted by MNRA

    AEGIS: Chandra Observation of DEEP2 Galaxy Groups and Clusters

    Get PDF
    We present a 200 ksec Chandra observation of seven spectroscopically selected, high redshift (0.75 < z < 1.03) galaxy groups and clusters discovered by the DEEP2 Galaxy Redshift Survey in the Extended Groth Strip (EGS). X-ray emission at the locations of these systems is consistent with background. The 3-sigma upper limits on the bolometric X-ray luminosities (L_X) of these systems put a strong constraint on the relation between L_X and the velocity dispersion of member galaxies sigma_gal at z~1; the DEEP2 systems have lower luminosity than would be predicted by the local relation. Our result is consistent with recent findings that at high redshift, optically selected clusters tend to be X-ray underluminous. A comparison with mock catalogs indicates that it is unlikely that this effect is entirely caused by a measurement bias between sigma_gal and the dark matter velocity dispersion. Physically, the DEEP2 systems may still be in the process of forming and hence not fully virialized, or they may be deficient in hot gas compared to local systems. We find only one possibly extended source in this Chandra field, which happens to lie outside the DEEP2 coverage.Comment: 5 pages, 3 figures. Accepted for publication in AEGIS ApJ Letters special editio

    The DEEP2 Galaxy Redshift Survey: Clustering of Groups and Group Galaxies at z~1

    Full text link
    We study the clustering properties of groups and of galaxies in groups in the DEEP2 Galaxy Redshift Survey dataset at z~1. Four clustering measures are presented: 1) the group correlation function for 460 groups with estimated velocity dispersions of sigma>200 km/s, 2) the galaxy correlation for the full galaxy sample, using a flux-limited sample of 9800 objects between 0.7<z<1.0, 3) the galaxy correlation for galaxies in groups, and 4) the group-galaxy cross-correlation function. Using the observed number density and clustering amplitude of the groups, the estimated minimum group dark matter halo mass is M_min~6 10^12 h^-1 M_Sun for a flat LCDM cosmology. Groups are more clustered than galaxies, with a relative bias of b=1.7 +/-0.04 on scales r_p=0.5-15 Mpc/h. Galaxies in groups are also more clustered than the full galaxy sample, with a scale-dependent relative bias which falls from b~2.5 +/-0.3 at r_p=0.1 Mpc/h to b~1 +/-0.5 at r_p=10 Mpc/h. The correlation functions for all galaxies and galaxies in groups can be fit by a power-law on scales r_p=0.05-20 Mpc/h. We empirically measure the contribution to the projected correlation function for galaxies in groups from a `one-halo' term and a `two-halo' term by counting pairs of galaxies in the same or in different groups. The projected cross-correlation between shows that red galaxies are more centrally concentrated in groups than blue galaxies at z~1. DEEP2 galaxies in groups appear to have a shallower radial distribution than that of mock galaxy catalogs made from N-body simulations, which assume a central galaxy surrounded by satellite galaxies with an NFW profile. We show that the clustering of galaxies in groups can be used to place tighter constraints on the halo model than can be gained from using the usual galaxy correlation function alone.Comment: 22 pages, 12 figures, in emulateapj format, accepted to ApJ, minor changes made to match published versio
    • 

    corecore